Log-Log, Log-Lin, and Lin-Log

TL;DR

  • Log–Lin: 1 unit of x → 100eβ change in y
  • Lin–Log: 1% change in xβ·ln(x₂/x₁)in y.
  • Log–Log: 1% change in xβ% change in y (elasticity).
  • Interactions let these effects vary by group or with another variable’s level.

1. Outcome is log-transformed (Log–Lin)

Model

ln y = \beta_0 + \beta_1 x + \varepsilon

Interpretation

  • Semi-elasticity: a 1-unit increase in x changes y by ≈ 100 β₁ %.
  • Exact % change for Δx: %Δy = 100 (e^{β₁ Δx} − 1).

2. Predictor is log-transformed (Lin–Log)

Model

y = \beta_0 + \beta_1 \ln x + \varepsilon

Interpretation

  • 1 % increase in x → ≈ 0.01 β₁ units change in y.
  • Exact finite change: Δy = β₁ ln(x₂/x₁).

3. Both outcome and predictor log-transformed (Log–Log)

Model

ln y = \beta_0 + \beta_1 \ln x + \varepsilon

Interpretation

  • 1 % increase in x → ≈ β₁ % increase in y.
  • Exact finite change: ln(y₂/y₁) = β₁ ln(x₂/x₁)y₂/y₁ = (x₂/x₁)^{β₁}.

📊 Quick Reference Table

ModelEquationCoefficient meaning
Log–Linln y = β₀ + β₁ x1 unit x → ≈ 100 β₁ % change in y (exact 100(e^{β₁}−1) %)
Lin–Logy = β₀ + β₁ ln x1 % x → 0.01 β₁ units change in y (Δy = β₁ ln(x₂/x₁))
Log–Logln y = β₀ + β₁ ln x1 % x → β₁ % change in y (y₂/y₁ = (x₂/x₁)^{β₁})


Comments

Leave a comment